

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis(pyridazine- κN)bis(thiocyanato- κN)nickel(II) pyridazine disolvate

Susanne Wöhlert,^a* Mario Wriedt,^b Inke Jess^a and Christian Näther^a

^aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany, and ^bDepartement of Chemistry, Texas A&M University, College Station, Texas 77843, USA Correspondence e-mail: swoehlert@ac.uni-kiel.de

Received 21 May 2012; accepted 21 May 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.032; *wR* factor = 0.084; data-to-parameter ratio = 16.5.

The reaction of nickel(II) thiocyanate with an excess of pyridazine leads to single crystals of the title compound, $[Ni(NCS)_2(C_4H_4N_2)_4]\cdot 2C_4H_4N_2$. The Ni^{II} cations are coordinated by two terminal *N*-bonded thiocyanate anions (*trans*) and four pyridazine ligands in a slightly distorted octahedral geometry. The discrete complexes are arranged into layers parallel to the *ab* plane which are separated by additional non-coordinated pyridazine ligands.

Related literature

For related pyridazine coordination compounds, see: Boeckmann *et al.* (2011); Lloret *et al.* (1998); Yi *et al.* (2006); Wriedt & Näther (2009, 2011).

Experimental

Crystal data

 $\begin{bmatrix} \text{Ni}(\text{NCS})_2(\text{C}_4\text{H}_4\text{N}_2)_4 \end{bmatrix} \cdot 2\text{C}_4\text{H}_4\text{N}_2 \\ M_r = 655.42 \\ \text{Triclinic, } P\overline{1} \\ a = 11.2111 (9) \text{ Å} \\ b = 12.033 (1) \text{ Å} \\ c = 12.5409 (10) \text{ Å} \\ \alpha = 62.287 (9)^{\circ} \\ \beta = 88.983 (10)^{\circ} \\ \end{bmatrix}$

Data collection

Stoe IPDS-1 diffractometer Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) $T_{min} = 0.916, T_{max} = 0.973$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.084$ S = 0.976400 reflections $\gamma = 88.949 (10)^{\circ}$ $V = 1497.4 (2) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 0.83 \text{ mm}^{-1}$ T = 200 K $0.06 \times 0.04 \times 0.03 \text{ mm}$

11937 measured reflections 6400 independent reflections 4719 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.029$

389 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.39$ e Å⁻³ $\Delta \rho_{min} = -0.40$ e Å⁻³

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: XCIF in SHELXTL and PLATON (Spek, 2009).

We gratefully acknowledge financial support by the DFG (project No. NA 720/3–1) and the State of Schleswig–Holstein. We also thank Professor Dr Wolfgang Bensch for access to his experimental facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5930).

References

Boeckmann, J., Jess, I., Reinert, T. & Näther, C. (2011). Eur. J. Inorg. Chem. pp. 5502–5511.

Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Lloret, F., Munno, G., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. 37, 135–138.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Wriedt, M. & Näther, C. (2009). Z. Anorg. Allg. Chem. 635, 2459-2464.
- Wriedt, M. & Näther, C. (2011). Eur. J. Inorg. Chem. pp. 228-234.
- Yi, T., Ho-Chol, C., Gao, S. & Kitagawa, S. (2006). Eur. J. Inorg. Chem. pp. 1381–1387.

supplementary materials

Acta Cryst. (2012). E68, m793 [doi:10.1107/S1600536812023306]

Tetrakis(pyridazine-*kN*)bis(thiocyanato-*kN*)nickel(II) pyridazine disolvate

Susanne Wöhlert, Mario Wriedt, Inke Jess and Christian Näther

Comment

Currently, we are interested in the synthesis and characterization of coordination polymers based on Mn(II), Fe(II), Co(II), Ni(II) and Cd(II) thiocyanates and pyridazine as co-ligand. Only a few compounds based on Cobalt, Nickel and Cadmium are structurally characterized (Boeckmann *et al.*, 2011; Lloret *et al.*, 1998; Yi *et al.*, 2006; Wriedt & Näther, 2011; Wriedt & Näther, 2009). In this context we have reported on two different modifications of a trinuclear nickel(II) complex of composition $[Ni_3(NCS)_6(pyridazine)_6]$ (Wriedt & Näther, 2009). In our ongoing investigation in this field we have isolated light-green single-crystals of a further compound by the reaction of nickel(II) thiocyanate with an excess of pyridazine, that were characterized by single-crystal X-ray diffraction. In the crystal structure of the title compound each nickel(II) cation is coordinated by two terminal N-bonded thiocyanato anions and four pyridazine ligands in a slightly distorted octahedral geometry (Fig. 1). The NiN₆ distances are ranges from 2.0494 (15) to 2.1530 (15) Å and the angles are between 87.33 (5) ° and 179.71 (7) °. Because of sterical reasons only one of the two pyridazine nitrogen atoms is involved in metal coordination. In the crystal structure the discrete complexes are arranged in layers that are parallel to the *ab* plane. These layers are separated by additional pyridazine ligands that are not coordinated to the metal centers (Fig. 2). The shortest intermolecular Ni···Ni distances amounts to 8.0823 (9) Å.

Experimental

Nickel(II) thiocyanate (Ni(NCS)₂) and pyridazine were obtained from Alfa Aesar. All chemicals were used without further purification. 0.125 mmol (21.7 mg) Ni(NCS)₂ and 2.76 mmol (200 μ L) pyridazine were reacted in a closed snap-vial without stirring. Light-green single crystals of the title compounds were obtained after two weeks.

Refinement

All H atoms were located in a difference map but were positioned with idealized geometry and were refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$ and C—H = 0.95 Å. *PLATON* (Spek, 2009) detected a pseudo-C centring in the structure. Nevertheless, the structure is just triclinic primitive.

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2008); cell refinement: *X-AREA* (Stoe & Cie, 2008); data reduction: *X-AREA* (Stoe & Cie, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 2011); software used to prepare material for publication: XCIF in *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

Crystal structure of the title compound with atom labels and displacement ellipsoids drawn at the 50% probability level.

Figure 2

Crystal structure of the title compound with view along the crystallographic *b*-axis.

Tetrakis(pyridazine-κN)bis(thiocyanato-κN)nickel(II) pyridazine disolvate

Crystal data

[Ni(NCS)₂(C₄H₄N₂)₄]·2C₄H₄N₂ $M_r = 655.42$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 11.2111 (9) Å b = 12.033 (1) Å c = 12.5409 (10) Å a = 62.287 (9)° $\beta = 88.983$ (10)° $\gamma = 88.949$ (10)° V = 1497.4 (2) Å³

Data collection

Stoe IPDS-1
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi scan
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
$T_{\min} = 0.916, \ T_{\max} = 0.973$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.032$ H-atom parameters constrained $wR(F^2) = 0.084$ $w = 1/[\sigma^2(F_o^2) + (0.0504P)^2]$ S = 0.97where $P = (F_0^2 + 2F_c^2)/3$ 6400 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ 389 parameters $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Primary atom site location: structure-invariant Extinction correction: SHELXL97 (Sheldrick, direct methods 2008), Fc^{*}=kFc[1+0.001xFc² $\lambda^{3}/sin(2\theta)$]^{-1/4} Secondary atom site location: difference Fourier Extinction coefficient: 0.0149 (15) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2F(000) = 676

 $D_{\rm x} = 1.454 {\rm Mg} {\rm m}^{-3}$

Block, light-green

 $0.06 \times 0.04 \times 0.03 \text{ mm}$

 $\theta_{\rm max} = 27.0^\circ, \, \theta_{\rm min} = 2.6^\circ$

11937 measured reflections 6400 independent reflections 4719 reflections with $I > 2\sigma(I)$

 $\theta = 2.6 - 27.0^{\circ}$ $\mu = 0.83 \text{ mm}^{-1}$

T = 200 K

 $R_{\rm int} = 0.029$

 $h = -14 \rightarrow 14$ $k = -15 \rightarrow 15$ $l = -16 \rightarrow 16$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 11937 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ni1	0.752765 (19)	0.75179 (2)	0.993234 (18)	0.01640 (8)
N2	0.85894 (13)	0.65700 (14)	1.14111 (13)	0.0237 (3)

C2	0.93634 (15)	0.60587 (16)	1.20694 (14)	0.0195 (3)
S2	1.04648 (4)	0.53396 (5)	1.29882 (4)	0.03462 (13)
N1	0.64734 (13)	0.84717 (14)	0.84542 (13)	0.0241 (3)
C1	0.56476 (16)	0.89404 (16)	0.78585 (14)	0.0204 (4)
S1	0.44826 (5)	0.95934 (5)	0.70169 (5)	0.03734 (14)
N10	0.69744 (12)	0.57958 (14)	0.99727 (12)	0.0212 (3)
N11	0.65668 (14)	0.48848 (14)	1.10237 (14)	0.0281 (3)
C11	0.62296 (18)	0.38099 (18)	1.10720 (19)	0.0332 (4)
H11	0.5923	0.3180	1.1815	0.040*
C12	0.62968 (18)	0.3551 (2)	1.0107 (2)	0.0365 (5)
H12	0.6056	0.2765	1.0180	0.044*
C13	0.67269 (19)	0.4479 (2)	0.9041 (2)	0.0398 (5)
H13	0.6806	0.4359	0.8346	0.048*
C14	0.70445 (17)	0.5607 (2)	0.90134 (17)	0.0301 (4)
H14	0.7323	0.6269	0.8275	0.036*
N20	0.61071 (12)	0.74611 (13)	1.11065 (12)	0.0185 (3)
N21	0.54160 (13)	0.85064 (14)	1.06923 (12)	0.0221 (3)
C21	0.45590 (16)	0.85656 (18)	1.14045 (16)	0.0267 (4)
H21	0.4084	0.9309	1.1115	0.032*
C22	0.43142 (18)	0.7605 (2)	1.25495 (17)	0.0329 (5)
H22	0.3682	0.7680	1.3027	0.039*
C23	0.50158 (17)	0.65455 (18)	1.29662 (16)	0.0287(4)
H23	0.4887	0.5855	1.3740	0.034*
C24	0.59298 (16)	0.65231 (16)	1.22036 (14)	0.0223(4)
H24	0.6444	0.5809	1.2481	0.027*
N30	0.80605 (12)	0.92471 (14)	0.98921 (13)	0.0210(3)
N31	0.83861 (14)	1.02153(14)	0.88415 (14)	0.0278(3)
C31	0.86974 (18)	1.12832 (19)	0.88297 (19)	0.0336 (4)
H31	0.8940	1.1960	0.8084	0.040*
C32	0.86879 (19)	1.1465 (2)	0.9847(2)	0.0382(5)
H32	0.8915	1.2242	0.9804	0.046*
C33	0.83376 (19)	1.0480 (2)	1.0911 (2)	0.0387(5)
H33	0.8298	1.0549	1.1635	0.046*
C34	0.80415 (17)	0.93705 (19)	1.08911 (17)	0.0290 (4)
H34	0.7815	0.8669	1.1627	0.035*
N40	0.89770 (12)	0.75517 (13)	0.87968 (12)	0.0192 (3)
N41	0.96253 (13)	0.64770 (14)	0.92420 (12)	0.0228 (3)
C41	1.05424 (16)	0.64035 (18)	0.85962 (16)	0.0266 (4)
H41	1.0987	0.5640	0.8902	0.032*
C42	1.08890 (17)	0.7384 (2)	0.74940 (17)	0.0316 (4)
H42	1.1567	0.7303	0.7069	0.038*
C43	1.02254 (18)	0.84661 (19)	0.70416 (16)	0.0298 (4)
H43	1.0420	0.9163	0.6291	0.036*
C44	0.92462 (16)	0.85029 (17)	0.77327 (15)	0.0236 (4)
H44	0.8756	0.9236	0.7429	0.028*
N50	0.70575 (16)	1,39686 (16)	0.45667 (15)	0.0364 (4)
N51	0.61715 (16)	1.33478 (17)	0.43752 (15)	0.0374 (4)
C51	0.6319 (2)	1.2132 (2)	0.47219 (19)	0.0387 (5)
H51	0.5686	1.1701	0.4587	0.046*

C52	0.7336 (2)	1.1454 (2)	0.5268 (2)	0.0403 (5)	
H52	0.7403	1.0583	0.5501	0.048*	
C53	0.82377 (19)	1.2079 (2)	0.54582 (19)	0.0371 (5)	
H53	0.8959	1.1666	0.5831	0.044*	
C54	0.80526 (19)	1.3355 (2)	0.50801 (18)	0.0339 (5)	
H54	0.8675	1.3812	0.5197	0.041*	
N60	1.18977 (17)	1.12073 (18)	0.50816 (18)	0.0425 (4)	
N61	1.12255 (18)	1.1575 (2)	0.57472 (19)	0.0497 (5)	
C61	1.1514 (3)	1.2601 (3)	0.5806 (2)	0.0525 (7)	
H61	1.1019	1.2854	0.6279	0.063*	
C62	1.2485 (3)	1.3331 (2)	0.5228 (3)	0.0559 (7)	
H62	1.2665	1.4061	0.5301	0.067*	
C63	1.3172 (2)	1.2955 (2)	0.4547 (3)	0.0535 (7)	
H63	1.3855	1.3411	0.4120	0.064*	
C64	1.2832 (2)	1.1884 (2)	0.4506 (2)	0.0444 (6)	
H64	1.3301	1.1613	0.4030	0.053*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01669 (12)	0.01298 (12)	0.01687 (12)	0.00196 (7)	0.00033 (7)	-0.00480 (8)
N2	0.0236 (7)	0.0211 (8)	0.0227 (7)	0.0033 (6)	-0.0016 (6)	-0.0072 (6)
C2	0.0225 (8)	0.0150 (8)	0.0199 (7)	-0.0005 (7)	0.0014 (7)	-0.0073 (7)
S2	0.0301 (3)	0.0309 (3)	0.0348 (3)	0.0052 (2)	-0.0147 (2)	-0.0082 (2)
N1	0.0249 (8)	0.0231 (8)	0.0215 (7)	0.0036 (6)	-0.0018 (6)	-0.0081 (6)
C1	0.0262 (9)	0.0146 (8)	0.0191 (7)	-0.0016 (7)	0.0019 (7)	-0.0068 (7)
S1	0.0335 (3)	0.0295 (3)	0.0393 (3)	0.0034 (2)	-0.0174 (2)	-0.0074 (2)
N10	0.0193 (7)	0.0183 (8)	0.0248 (7)	-0.0001 (6)	0.0008 (6)	-0.0090 (6)
N11	0.0330 (8)	0.0186 (8)	0.0301 (8)	-0.0047 (7)	0.0069 (7)	-0.0091 (7)
C11	0.0324 (10)	0.0206 (10)	0.0431 (11)	-0.0054 (8)	0.0038 (9)	-0.0118 (9)
C12	0.0315 (10)	0.0283 (11)	0.0568 (13)	-0.0053 (8)	-0.0018 (9)	-0.0256 (10)
C13	0.0416 (12)	0.0464 (14)	0.0484 (12)	-0.0086 (10)	-0.0005 (10)	-0.0361 (11)
C14	0.0308 (10)	0.0336 (11)	0.0295 (9)	-0.0064 (8)	0.0011 (8)	-0.0175 (8)
N20	0.0192 (7)	0.0154 (7)	0.0195 (6)	0.0027 (6)	0.0004 (5)	-0.0070 (6)
N21	0.0226 (7)	0.0183 (8)	0.0222 (7)	0.0053 (6)	0.0007 (6)	-0.0070 (6)
C21	0.0270 (9)	0.0252 (10)	0.0286 (9)	0.0076 (8)	0.0008 (7)	-0.0136 (8)
C22	0.0325 (10)	0.0377 (12)	0.0293 (9)	0.0027 (9)	0.0093 (8)	-0.0168 (9)
C23	0.0337 (10)	0.0272 (10)	0.0204 (8)	0.0000 (8)	0.0055 (7)	-0.0071 (8)
C24	0.0260 (9)	0.0181 (9)	0.0203 (8)	0.0013 (7)	0.0006 (7)	-0.0068 (7)
N30	0.0185 (7)	0.0172 (7)	0.0260 (7)	0.0019 (6)	-0.0016 (6)	-0.0089 (6)
N31	0.0319 (8)	0.0174 (8)	0.0314 (8)	-0.0033 (6)	0.0060 (7)	-0.0093 (7)
C31	0.0341 (10)	0.0224 (10)	0.0412 (11)	-0.0069 (8)	0.0062 (9)	-0.0123 (9)
C32	0.0348 (11)	0.0295 (11)	0.0588 (13)	-0.0059 (9)	-0.0007 (10)	-0.0275 (11)
C33	0.0408 (12)	0.0428 (13)	0.0445 (11)	-0.0090 (10)	-0.0011 (9)	-0.0302 (11)
C34	0.0325 (10)	0.0276 (10)	0.0281 (9)	-0.0054 (8)	-0.0010 (8)	-0.0138 (8)
N40	0.0194 (7)	0.0157 (7)	0.0205 (6)	0.0001 (6)	0.0011 (5)	-0.0068 (6)
N41	0.0234 (7)	0.0181 (8)	0.0240 (7)	0.0045 (6)	0.0023 (6)	-0.0075 (6)
C41	0.0260 (9)	0.0260 (10)	0.0278 (9)	0.0054 (8)	0.0025 (7)	-0.0127 (8)
C42	0.0292 (10)	0.0374 (12)	0.0289 (9)	0.0002 (8)	0.0104 (8)	-0.0164 (9)
C43	0.0363 (10)	0.0280 (10)	0.0205 (8)	-0.0062 (8)	0.0080 (7)	-0.0076 (8)

C44	0.0311 (9)	0.0159 (9)	0.0200 (8)	0.0015 (7)	0.0013 (7)	-0.0053 (7)
N50	0.0455 (10)	0.0223 (9)	0.0359 (9)	-0.0048 (8)	-0.0030 (8)	-0.0086 (7)
N51	0.0394 (10)	0.0320 (10)	0.0333 (9)	-0.0052 (8)	-0.0048 (7)	-0.0086 (8)
C51	0.0455 (13)	0.0367 (12)	0.0370 (10)	-0.0160 (10)	0.0042 (9)	-0.0192 (10)
C52	0.0516 (14)	0.0242 (11)	0.0462 (12)	-0.0015 (10)	0.0107 (10)	-0.0176 (10)
C53	0.0339 (11)	0.0377 (12)	0.0352 (10)	0.0051 (9)	0.0074 (8)	-0.0137 (9)
C54	0.0351 (11)	0.0321 (11)	0.0322 (10)	-0.0095 (9)	0.0004 (8)	-0.0127 (9)
N60	0.0403 (10)	0.0337 (10)	0.0583 (12)	-0.0004 (8)	-0.0048 (9)	-0.0254 (9)
N61	0.0437 (11)	0.0400 (12)	0.0573 (12)	0.0049 (9)	0.0056 (9)	-0.0163 (10)
C61	0.0640 (17)	0.0532 (16)	0.0474 (13)	0.0264 (14)	-0.0112 (12)	-0.0299 (13)
C62	0.0652 (17)	0.0297 (13)	0.0843 (19)	0.0167 (12)	-0.0445 (15)	-0.0353 (14)
C63	0.0351 (12)	0.0342 (13)	0.0771 (18)	-0.0056 (10)	-0.0074 (12)	-0.0136 (13)
C64	0.0445 (13)	0.0424 (14)	0.0494 (13)	0.0022 (11)	0.0042 (10)	-0.0242 (11)

Geometric parameters (Å, °)

Ni1—N1	2.0494 (15)	C32—C33	1.366 (3)
Ni1—N2	2.0538 (15)	С32—Н32	0.9500
Ni1—N40	2.1298 (13)	C33—C34	1.393 (3)
Ni1—N20	2.1299 (13)	С33—Н33	0.9500
Ni1—N10	2.1516 (15)	С34—Н34	0.9500
Ni1—N30	2.1530 (15)	N40—C44	1.327 (2)
N2—C2	1.160 (2)	N40—N41	1.3494 (19)
C2—S2	1.6387 (18)	N41—C41	1.325 (2)
N1—C1	1.161 (2)	C41—C42	1.391 (3)
C1—S1	1.6362 (18)	C41—H41	0.9500
N10-C14	1.325 (2)	C42—C43	1.365 (3)
N10—N11	1.342 (2)	C42—H42	0.9500
N11-C11	1.328 (3)	C43—C44	1.399 (2)
C11—C12	1.384 (3)	C43—H43	0.9500
C11—H11	0.9500	C44—H44	0.9500
C12—C13	1.369 (3)	N50—C54	1.326 (3)
C12—H12	0.9500	N50—N51	1.343 (3)
C13—C14	1.394 (3)	N51—C51	1.326 (3)
С13—Н13	0.9500	C51—C52	1.382 (3)
C14—H14	0.9500	C51—H51	0.9500
N20—C24	1.327 (2)	C52—C53	1.360 (3)
N20—N21	1.3502 (19)	С52—Н52	0.9500
N21—C21	1.324 (2)	C53—C54	1.393 (3)
C21—C22	1.388 (3)	С53—Н53	0.9500
C21—H21	0.9500	C54—H54	0.9500
C22—C23	1.370 (3)	N60—C64	1.318 (3)
C22—H22	0.9500	N60—N61	1.331 (3)
C23—C24	1.398 (2)	N61—C61	1.316 (3)
С23—Н23	0.9500	C61—C62	1.378 (4)
C24—H24	0.9500	C61—H61	0.9500
N30—C34	1.328 (2)	C62—C63	1.360 (4)
N30—N31	1.341 (2)	С62—Н62	0.9500
N31—C31	1.331 (3)	C63—C64	1.375 (4)
C31—C32	1.391 (3)	С63—Н63	0.9500

supplementary materials

С31—Н31	0.9500	С64—Н64	0.9500
N1—Ni1—N2	179.71 (7)	N31—C31—H31	118.1
N1—Ni1—N40	90.25 (6)	С32—С31—Н31	118.1
N2—Ni1—N40	89.64 (6)	C33—C32—C31	117.2 (2)
N1—Ni1—N20	91.20 (6)	С33—С32—Н32	121.4
N2—Ni1—N20	88.90 (6)	C31—C32—H32	121.4
N40—Ni1—N20	178.54 (6)	C32—C33—C34	117.37 (19)
N1—Ni1—N10	88.37 (6)	С32—С33—Н33	121.3
N2—Ni1—N10	91.90 (6)	С34—С33—Н33	121.3
N40—Ni1—N10	87.95 (5)	N30—C34—C33	123.06 (18)
N20—Ni1—N10	92.16 (5)	N30—C34—H34	118.5
N1—Ni1—N30	91.25 (6)	С33—С34—Н34	118.5
N2—Ni1—N30	88.48 (6)	C44—N40—N41	120.64 (14)
N40—Ni1—N30	92.57 (5)	C44—N40—Ni1	125.54 (12)
N20—Ni1—N30	87.33 (5)	N41—N40—Ni1	113.81 (10)
N10—Ni1—N30	179.36 (5)	C41—N41—N40	118.32 (14)
C2—N2—Ni1	165.91 (13)	N41—C41—C42	123.54 (17)
N2—C2—S2	179.46 (15)	N41—C41—H41	118.2
C1—N1—Ni1	161.54 (13)	C42—C41—H41	118.2
N1—C1—S1	179.63 (17)	C43 - C42 - C41	117.98 (16)
C14 - N10 - N11	119.91 (16)	C43—C42—H42	121.0
C14—N10—Ni1	122.41 (13)	C41 - C42 - H42	121.0
N11—N10—Ni1	117 67 (11)	C42-C43-C44	117.04 (16)
C11— $N11$ — $N10$	118.70 (15)	C42-C43-H43	121.5
N11—C11—C12	124.07 (19)	C44-C43-H43	121.5
N11—C11—H11	118.0	N40-C44-C43	122.43 (16)
C12— $C11$ — $H11$	118.0	N40-C44-H44	118.8
C13 - C12 - C11	116.88 (19)	C43—C44—H44	118.8
C13 - C12 - H12	121.6	C54 - N50 - N51	119 27 (18)
$C_{11} - C_{12} - H_{12}$	121.6	C_{51} N51 N50	119.27 (10)
C12 - C13 - C14	117 59 (18)	N51-C51-C52	1241(2)
C12 - C13 - H13	121.2	N51-C51-H51	117.9
C12 - C13 - H13	121.2	C_{52} C_{51} H_{51}	117.9
N10-C14-C13	121.2	$C_{52} = C_{51} = H_{51}$	117.5 117.5(2)
N10-C14-H14	118.6	$C_{53} - C_{52} - C_{51}$	121.2
C_{13} C_{14} H_{14}	118.6	$C_{51} - C_{52} - H_{52}$	121.2
$C_{13} = C_{14} = 1114$	120 47 (13)	$C_{51} = C_{52} = 1152$	121.2 116.8 (2)
$C_{24} = N_{20} = N_{21}$	120.47(13) 124.20(11)	$C_{32} = C_{33} = C_{34}$	110.8 (2)
N21 N20 Ni1	124.29(11) 115.09(10)	$C_{52} = C_{53} = H_{53}$	121.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.09(10) 118.35(14)	N50 C54 C53	121.0 123.7(2)
N21 C21 C22	110.55(14) 123.81(17)	N50 C54 H54	123.7 (2)
$N_{21} = C_{21} = C_{22}$ $N_{21} = C_{21} = H_{21}$	118.1	C_{53} C_{54} H_{54}	118.1
$C_{22} = C_{21} = H_{21}$	118.1	C64 N60 N61	118.7(2)
$C_{22} = C_{21} = -1121$ $C_{23} = C_{22} = C_{21}$	117 67 (16)	C61 - N61 - N60	110.7(2)
$C_{23} = C_{22} = C_{21}$	121.07 (10)	N61 - C61 - C62	119.0(2) 1244(2)
$C_{23} = C_{22} = H_{22}$	121.2	N61—C61—H61	117.8
C^{22} C^{22} C^{23} C^{24}	117 13 (17)	C62 - C61 - H61	117.8
C22_C23_H23	121 4	$C_{62} = C_{61} = C_{61}$	1167(2)
022 023 1123	1 - 1 + 1	000 002 001	11011 (4)

С24—С23—Н23	121.4	С63—С62—Н62	121.7	
N20-C24-C23	122.52 (16)	С61—С62—Н62	121.7	
N20—C24—H24	118.7	C62—C63—C64	116.9 (2)	
С23—С24—Н24	118.7	С62—С63—Н63	121.6	
C34—N30—N31	119.93 (16)	С64—С63—Н63	121.6	
C34—N30—Ni1	120.60 (12)	N60—C64—C63	124.4 (2)	
N31—N30—Ni1	119.45 (11)	N60—C64—H64	117.8	
C31—N31—N30	118.68 (16)	C63—C64—H64	117.8	
N31-C31-C32	123.75 (19)			